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ABSTRACT

This report describes the various techniques and algorithms developed to

enhance the accuracy of the measurements of very fast transient electromagnetic

fields generated during EMP testing. Some fundamentals of digital signal

processing are presented and the practical aspects are highlighted. The response

of some sensors to incident fields is studied. Appropriates algorithms for

reconstructing the incident field from the measurements are developed. The

effect of a low frequency cut-off of some sensors is also studied. A method to

design a digital filter of arbitrary transfer function is presented. It is

applied to compensate for losses occurring in long cables and also to fine tune

other filters. The Hilbert transform is introduced to relate the magnitude and

phase component of a transfer function. An implementation of the transform is

given, allowing the design of digital filters when only the magnitude of the

transfer function is known.

RESUME

Ce rapport ddcrit diffdrentes techniques ddveloppdes pour amdliorer la

prdcision des mesures de champ dlectromagndtique extr~mement rapide utilisds lors

des test d'impulsions dlectromagndtique (IEM). Certains aspects fondamentaux du

filtrage numdrique sont rdvises. La rdponse de capteurs A des champ dlectro-

magndtique est itudide. Diffdrents algorithmes de filtrage pour obtenir le champ

incident A partir des mesures sont congus. Une mdthode de conception de filtre

numdrique A fonction de transfert quelconque est prdsentde. Cette mdthode est

appliqude pour campenser l'attdnuation des cAbles et pour corriger les

imperfections d'autres filtres. La transformde de Hilbert est utilisd pour

6tablir une relation entre l'amplitude et la phase des fonctions de transfert.

Cette relation permet de construire des filtres pour corriger des systdme dont

on ne peut mesurer que l'amplitude.
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EXECUTIVE SUMMARY

DREO has built a large experimental facility for the measurement of the
effects of nuclear electromagnetic pulse (EMP) on systems. The transient field
generated is extremely short and difficult to measure. This report describes the
various techniques and algorithms developed to process and enhance these

measurements.

The response of various sensors to incident fields is studied. It is shown
that passive sensors normally respond to the time-derivative of the field,
requiring some form of integration to recover the original field. Some well
known methods are presented. An alternative technique is developed, based on
both hardware and software. It is shown that the overall performances are
improved and some experimental results are given. The effect of a low frequency
cut-off of some sensors is also studied, and a correction algorithm is given.

A method to design a digital filter of arbitrary transfer function is
presented. It is applied to compensate for losses occurring in long cables and
also to fine tune other filters. The Hilbert transform is introduced to relate
the magnitude and phase component of a transfer function. An implementation of
the transform is given, allowing the design of digital filters when only the

magnitude is known.

Aocession For

11ariblllty Codes

v Dist~ Special



TABLE OF CONTENTS

PAGE

ABSTRACT ............. ................................ . i. i

EXECUTIVE SUMMARY ........... ............................. v

TABLE OF CONTENTS .... ............ vii

1.0 INTRODUCTION .......... ........................... . 1

1.1 THE EMP THREAT ........ ....................... . 1
1.2 DREO LARGE EMP SIMULATOR FACILITY ....... .............. 2

2.0 DIGITAL SIGNAL PROCESSING .......... ..................... 5
2.1 THE Z-TRANSFORM ........... ....................... 6
2.2 DESIGN OF IIR FILTERS .......... .................... 9
2.3 DESIGN OF FIR FILTERS .......... .................... 10

3.0 CORRECTING FOR ELECTROMAGNETIC FIELD MEASUREMENTS .. ......... .. 13

3.1 INTEGRATING D-DOT AND B-DOT SENSORS OUTPUT .. ......... .. 15
3.2 COMPENSATING FOR LOW FREQUENCY CUT-OFF ... ........... .. 21

4.0 CORRECTING FOR MEASUREMENT SYSTEM ERRORS .... ............. .. 25
4.1 CORRECTING FOR CABLE LOSSES ...... ................. . 25
4.2 HILBERT TRANSFORM ......... ...................... . 28

5.0 CONCLUSION ........... ............................ 35

REFERENCES ............. ............................... .. 37

vii



1.0 .ITRODUCTION

Under a program sponsored by DND, DREO is expanding its Nuclear Electro-
magnetic Pulse (EMP) research capability with the addition of a new large
experimental facility. The EMP is a high-intensity, short-duration electro-
magnetic field that originates from a nuclear detonation. Although the energy
content of EMP is not very large because of its short duration, electronic
components or systems can be upset or damaged by the very high voltages or
currents which can be induced. To assure EMP hardness, suitable tests and

analysis are needed.

Even when the EMP hardening is taken into consideration from the beginning
of the design stage and supported by prediction and analysis, a validation of
such prediction by proper tests is necessary to raise the level of confidence.
The EMP field or induced currents in cables or antennas are simulated and the
system response is compared to the predictions.

DREO has built an EMP test facility in which a system under test is
subjected to an EMP waveform. Measurements are made with a variety of sensors
and probes, and good cables or fiber-optic links are use to carry these signals
into a shielded-room housing all the sensitive data acquisition equipment. High
speed digitizers must be used to record the extremely fast transient induced by

the EMP waveform.

Sensors have their respective transfer function, data links introduce
errors and instruments have their limitations, all of which alter the measurement
being made. Post-processing of the data is necessary to remove errors and
restore the original quantity that was measured (field or current). This report
describes the various techniques and algorithms developed to process and enhance
these measurements.

1.1 THE KU THEAT

The EMP produced by a nuclear burst at high altitude is a large-amplitude,
very short duration transient field covering a very wide area beneath the burst
point. In general, the exact characteristics of the EMP field such as peak
amplitude, rise time and polarization, depend on many factors, such as the weapon
yield, the height of burst and the observer's location. For practical purposes,
a standard waveform representing a worst case is used [3] [4]. The standard EMP
waveform has a peak value of 50 kV per meter, a rise time (10-90%) of about
4.2 nsec, a pulse width (50-50%) of about 185 nsec and a decay time (peak-to-10%)
of about 600 nsec.
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Two analytical expression are commonly used to approximating the EMP
waveform. The double exponential form (1), often referred to as the Bell curve
(6] or the old NATO definition, is simpler and also has a simple Laplace
transform, which makes it possible to solve simple problems analytically:

E M) = AV • (e-'t -e - Pt )  (I1)

The reciprocal form (2), referred to as the new NATO definition, is more
accurate as its derivatives are continuous over time, which gives a more
realistic leading edge:

E(t) _ AV • eat (2)l~e ( )

1.2 DRuO LARGE M[P SIMULATOR FACILITY

DREO has designed and built a large bounded wave EMP simulator of about 100
meters long, 20 meters wide and 10 meters high with a useful working area of 30
by 20 meters. Bounded wave simulators produce electromagnetic fields confined
between two parallel plates or between wire arrays approximating two parallel
plates. The plates are tapered at both ends with a generator attached at one end
and a terminating load at the other end. This type of simulator is in fact a
large transmission line with a fairly uniform field within the parallel section.
The generator is capable of launching a 600 kV impulse with a 5 ns rise time in
the transmission line necessary to produce the 50 kV/m fields required by the
MIL-STD-461C standard.

The system response is measured by field sensors and current or voltage
probes. Field sensors are generally passive devices, basically electric dipole
or magnetic loop. Their response can be very fast with a high dynamic range, but
their sensitivity is relatively low. Their output is generally the time-
derivative function of the field (known as D-dot and B-dot sensors) which will
require further processing to restore the waveform and for D-dot sensors, the
output voltage can be expressed by:

V0 = R.Aq* dD = R-A... dD.Cos 0 (3)

High speed digitizers are used to convert the measurements into digital
form. A number of them are used, at present allowing up to a total of nine
simultaneous measurements. The table below summarize the key characteristics of
each. These instruments give the capability of measuring transients (single
shot) with a rise time shorter than I or 2 nanoseconds. Due to the limited
number of samples obtained at the faster rates (> 1 Gs/sec), it is not always
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possible to capture the whole signal, which may last more that 1-2 As, and still

capture accurately the fast rising edge (few nanoseconds). Two channels, at

different speed, may be used to record the whole signal.

Model Bandwidth Sampling rate

SCD1000 1 GHz 200 G.s/sec

TEK7912HB 700 MHz 100 G.s/sec

DSA602 400 MHz 2 G.s/sec

LeCroy 6880A 400 MHz 1.3 G.s/sec

LeCroy 8828C 100 MHz 200 M-s/sec

The recorded data is transferred to a computer for storage and post-

processing. It is very important to save along with the measurements all the

information necessary to identify the setup used for the test and all the

instrument parameters necessary to reconstruct the waveform.

Data processing of the waveforms is an essential part of the measurement

process. It is possible to model arbitrary transfer functions and to compensate

for errors, such as:

recover from a sensor transfer function (by differentiation,
integration, scaling, etc.)

account for sensor calibration

* compensate for cable attenuation at higher frequencies

* account for any attenuator or filter inserted

* compensate for some of the instrument limitations

* merge two measurements of the same signal

• perform functions on multiple measurements (averaging, dejitter,

etc.)
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2.0 DIGITAL SIGNAL PROCESSING

Digital signal processing (DSP) is the digital counterpart of analog
filtering. Algorithms to be applied onto digitized signals are designed to
approximated the desired filtering functions. Digital filters may be real time,
in which case their output is converted back to analog signals, or they may
operate on pre-stored data sequences of finite length. The transfer function of
the digital filter can be precisely tailored and, contrary to its analog

equivalent, is not affected by tolerance or variation of components.

In the discrete-time linear systems theory, from which digital processing
is derived, signals are defined only for the discrete values of time t - n.T,
where T (also often denoted as At) is the interval between samples. Discrete-

time signals are represented as sequences of numbers. Related to the analog
world, a sequence may represent an analog signal sampled at a regular interval.

A sequence is denoted ix) and the nth element of it as x(n) or x,. Sequences may
be infinite or have a finite number of samples N (x0 to XN_1)

The most straightforward approach to compute the response of a system is
to multiply the input and the transfer function in the frequency domain:

e(t) * E(w)

H(M) (4)

y(t) Y(w)

and use a fast Fourier transform (FFT) algorithm to generate the time domain

response. This approach has several drawbacks. e(t) and H(W) must have the same
size, which must be a power of 2 in order to use the standard FFT algorithm.
Although the FFT is efficient to compute the spectrum of a signal, it is not the
most efficient approach to filtering, specially for longer sequences (some of the
digitizers may record as many as 64,000 data points).

The FFT has also some side-effects, which may alter the solution
considerably. Consider for instance a measurement truncated in order to obtain
details of the rising edge. This truncation will introduce a severe aliasing in
the solution. This aliasing is caused because taking the inverse FFT of a
product corresponds to performing a circular convolution in time dmain. This
problem can be eliminated if both sequences are doubled by adding zero's, which
would then corresponds to performing a linear convolution. This however is at
the expense of an increase of the compute time and storage area by a factor of 4.
Nonetheless, truncating a sequence is equivalent to multiplying it with a
rectangular window, which corresponds to the convolution of H(w) with a sinc(x)
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function. This is the well-known Gibbs phenomenon, which causes H() to ripple
and overshoot by as much as 9% around discontinuities and rapid transitions.

A better approach to perform digital filtering is the use of the

z-transform, based on the theory of discrete-time linear systems.

2.1 THE Z-TRANSFORN

In continuous-time systems theory, we use the Laplace and the Fourier
transforms to characterize linear time-invariant systems. Similarly, it is

possible to generalized these transforms for discrete-time systems, resulting in
the z-transform.

The transform X(Z) of a sequence x(n) is defined as:

X(z) -Ex(n)z-n  (5)
-0

where z is a complex variable. The function will converge only for some values
of z. Detailed discussion of the z-transform can be found in [7], but we can

state the general results for our cases of interest. The series will converge
for values of z on the unit circle if the system is stable, and vice-versa. The
z-transform will always converge on the unit circle for finite-length sequences
and will converge for causal sequences if all the poles of the transform lie

inside the unit circle.

The z-transform may be related to the Fourier transform by evaluating it
on the unit circle, ie. by using the relation:

z W e j W  (6)

in (5) above, yielding to:

X(z). X(e W) = f x(n) e -" (7)
n-a

which is the Fourier transform of x(n). This relation is important as it gives

the exact frequency response of a digital filter with a transfer function H(z).

Similarly, the z-transform may also be related to the Laplace transform with the

substitution:

z = e'T  (8)

6



Not surprisingly, the z-transform shares the same basic properties of the

Laplace and Fourier transforms. The z-transform is linear; that is the

transform of ax1(n) + bx2(n) is aX1(z) + bX2(z).

One of the most important and useful property is the shift in time (delay)
of a sequence. If a sequence x(n) is delayed by no samples, then the following

relation is obtained:

x(n-n0) v- z "%  X(z) (9)

where z-N can be seen as a delay element, similar to e tos with the Laplace

transform and e-jwto with the Fourier transform.

As with the Laplace transform, it can be shown that the multiplication of
two z-transforms corresponds to the convolution of the two corresponding

sequences, ie.:

x(n) * y(n) - X(z) Y(z) (10)

where the convolution is defined by:

x(n) * y(n) = i x(k) y(n-k) (11)
k--Q

Furthermore, the input-output relation of a system corresponds to the

multiplication of the z-transforms of the input and the unit-sample response, in

a way similar to the Fourier transform as expressed by (4). This property

suggest that one could use the same method for solving problems. It would

require performing the z-transform of the input with (5) and an inverse transform

of the output (not shown, but it is a rather complicated function, difficult to

calculate). Instead, if we define H(z) as a ratio of two polynomials in z-1 such

as:

M

E bjz -j

H) B(z) . j-o (12)H~z -- A-) 1
z-k

k=0

and if we apply the delay property to (5), we obtain:

N M
Eaky(n-k) = Ebjx(n-j) (13)
k-0 J-0
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which may be normalized for a0-1 and rewritten as
1 :

Yn = boxn + blx- 1 + b2xn- +. bMXn-M (14)

- alyn 1 - a2yn 2 - ... aNyn

which states that the output at a given time n is a function of the present and

past values of the input, and also a function of the past values of the output.
The problem of designing a filter of given characteristics becomes a question of

finding the proper coefficients.

All the algorithms developed in this report are based on the relations
between the z-transform and the Fourier and Laplace transforms and the use of

several techniques to transpose a transfer function from the frequency domain or

the s-domain into the z-domain to obtain H(z). Relation (14) provides an

efficient computer implementation of the resulting filter.

Several techniques have been developed to design digital filters, yielding

to two general classes of filters. For filters where A(z) is 1 (a0 is 1, all

other terms are 0), the output depends on the input only and consequently the

impulse response of such system will be of finite duration. Such filterr are

known as Finite Impulse Response (FIR) filters. For cases where the output may
also depend on the past values of the output, the impulse response is infinite

because of the recursive nature of these filters. These filters are known as

Infinite Impulse Response (IIR) filters. FIR and 1IR filters each have their

advantages and disadvantages and the choice between one or another and the

technique used to find the coefficients is often dictated by the particular

problem:

fIR filters are the most efficient, requiring 5 to 10 times fewer

coefficients than the FIR equivalent.

IIR filters are primarily limited to more classical filters, such as

low-pass, high-pass, pass-band, band-stop, etc., for which the

expression in Laplace domain is known. It also allows the use of the

classical solutions of filter design, such as Butterworth,

Chebyshev, elliptic filters.

An expression for calculating the coefficients of IIR filters for

any AT can usually be obtained. By comparison, the coefficients of

FIR filters are often obtained by iterative or cumbersome procedures

and are calculated for a single AT only, therefore requiring the

1 A detailed development of this relation can be found in [7].
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storage in advance of tables containing the coefficients of various

AT.

FIR filters can be designed to have a precisely linear phase, which

is not possible with fIR filters.

FIR filters can be designed to match any arbitrary response.

2.2 DESIGN OF IIR FILTERS

Designing a digital filter (ie. finding the proper coefricients) is

basically a problem of approximating the characteristics of the desired filter

by following some criteria. fIR filters are best suited for cases where an

equivalent analog filter exists. Several techniques (such as the impulse

invariance, mapping of differential equations, the bilinear transformation, and

the matched z transformation) have been developed to transpose a filter defined

in s-domain into the z-domain. Of particular interest to our application is the

bilinear transform.

This procedure is developed in [7] by solving a simple problem with the

integral equation and approximating the integral with the trapezoidal rule,

resulting in the substitution:

S 0 2 l-z "- (15)
'T -1 z'

The main advantages of the bilinear substitutions are:

* A Nth order transfer function H(s) gives a Nth order digital filter,

thus simple filters will result into simple equations.

* A stable analog filter will always give a stable digital filter.

* The transformation does not introduce aliasing. Therefore, it is

possible to design filters operating near their Nyquist limit.

There is however one disadvantage, that is the introduction of a distortion

of the frequency axis. The relation between the analog frequency a and the

digital frequency w is no longer linear, but corresponds to:

' This expression is also an approximation of (8), ie. the truncation to one
term of the Taylor series expansion of s - lnz / T.

9



wT = tan-I(OT) (16)

which may be considered linear for low frequencies and the distortion will grow
as the frequency approaches the Nyquist frequency. For instance, for 0.- 1/10,

1/4 and 1/2 of the Nyquist frequency, the distortion is 1%, 5% and 15%
respectively. In many cases, this distortion may be accounted for. Consider for
instance the design of a low-pass or band-pass filter with a critical cut-off
frequency 0,. It is possible to still obtain a very acceptable filter with the
bilinear transformation by solving the problem for the cut-off frequency

(2/T)tan(wT/2) instead of wr, ie. by pre-distorting the frequency axis.

2.3 DESIGN OF FIR FILTERS

FIR filters are attractive particularly for their capability to implement
arbitrary frequency responses. As seen, the transfer function of a FIR filter

is given as:

N-i

H(z) - Eh(n)z-n (17)
n-O

where h(n) is the impulse response of the filter. A FIR filter is designed
simply by finding its impulse response. However, in most cases, the impulse
response is infinite, ie. it extends from -- to +-. The most straightforward

approach consists of truncating the impulse response to N terms. This
truncation, however, leads to the well-known Gibbs phenomenon. Simply,

truncation in time domain is similar to a multiplication with a rectangular
window and results in frequency domain in the convolution of H(z) with the
transform of the window, which is sin(wN/2)/sin(w/2). The result is a smear of
the frequency response, especially near the sharp transition, resulting in a

fixed percentage of overshoot and ripple. For example, the overshoot of an ideal
low-pass filter is about 9% at the transition, and more important, it does not
decrease as the size of h(t) is increased. The problem may be controlled with
the use of other windows, such as the Hamming, Hanning, Blackman, Bartlett and
Kaiser windows. These windows increase the stop-band attenuation and decrease
the main lobe width, resulting in smaller overshoot and a more abrupt stop band.

This, however, is at the cost of a larger N. In our applications, where we are
concerned ajout compensating for cable losses, etc., the frequency response is
fairly smooth and thus, the Gibbs effect is very small and may be neglected.

Another technique, known as the frequency-sampling, allows to design FIR
filters by specifying N samples of their frequency response. This design
is particularly attractive for narrow pass-band filters, but in general
the windowing techniques are more practical and more flexible.

10



Ideally, the analytical form of h(n) should be used to calculate the
coefficients. In many cases, it is difficult to evaluate and a M-point inverse
DFT or FFT is used with a N-point window. This gives accurate results,
especially if the frequency response is smooth and if M >> N. However, great
care should be exercise to avoid the side-effects resulting from the application
of the DFT algorithm. In any case, relation (6) should be used to check the
response of the filter, specially for frequencies not a multiple of Af as the

filter may give an exact solution for these frequencies but exhibit some ripple
for others. A technique for designing FIR filters will be further developed in

Chapter 4.

Some problems are more difficult (or impractical) to implement as FIR
filters because their impulse response is of long duration and would require a
large number of points. Consider for instance a 1st order low-pass filter with
a cut-off frequency c-0.O0l/T. Its impulse response is exp(-WcnT) and between

250 and 500 samples would be required to create a FIR filter. Filters which
exhibit resonances (narrow band filters) also have a long duration impulse
response. On the other hand, filters with a near unity frequency response, such
as one designed to compensate for the slight loss occurring in cables at higher

frequencies, have a very short impulse response, resulting in typically between
5 to 20 coefficients.

This last property can be used to combine both FIR and IIR techniques to
design more efficient filters. Consider for instance the problem shown on
Figure 2-1 where the desired function H(w) cannot be expressed easily in the

s-domain. A FIR design would give a very good approximation of the function, but
with a large number of coefficients. Instead, H(w) can be represented as the

product two functions: G(w) being an ideal i't order low-pass filter, and
E(w) - H(w)/G(w) being the error between the two. G(w) is efficiently

implemented as a i"t order IIR filter and E(w) as a FIR filter with few
coefficients. This results obviously in an IIR filter.

' The impulse response of a pass-all filter, H(w) - 1, is the ideal impulse
6(n). Consequently, the impulse response will tend toward the ideal
impulse as the frequency response approaches unity.
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Figure 2-1. Using a FIR filter to fine tune an IIR filter.
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3.0 CORRECTING FOR ELECTROMACNETIC FIELD MEASUREMENTS

Field sensors are used to measure the electric field (E, in Volt/meter) or
flux density (D-c 0 E, in Coulomb/meter, where t 0-8.85.10 " 12 ) and the magnetic field
(H, in Ampere/meter) or flux density (B-A 0H, in Tesla, where p0-47r.10- 7 ). Field
sensors may be active or passive (ie. no external power), but generally passive
devices are used. The most basic type of field sensor is the small' electric
dipole or the small magnetic dipole (loop).

Figure 3-1 shows a simple circuit model for a small electric and a small
magnetic dipoles. The transfer function of the electric dipole is given as:

heq* RCs -EcosO = AR. Rs -DcosO (18)
AaoR. 1 h R-

which both output a voltage proportional to the normal component of the field (6
being the angle between the field and vector normal to the sensor ground plane)
above a certain cut-off frequency (related to the time constants RC and L/R), and
a voltage proportional to the time-derivative of the field below it. For
practical geometries and for sensors normally matched to the instrumentation
(50 0), these sensors operate well below the cut-off frequency and thus will
always respond to the derivative of the field, approximated by:

Vout = A -,gR - cosa (19)

Similarly, the output of the magnetic dipole, is given by:

Vou t = pA R . dHcosa = Aeq s .BcosO
(20)

dB cos9

Because these sensors output the time-derivative of the excitation, they

are known as D-dot and B-dot sensors (or 6 and B sensors). Since the response
of these sensors depend on the geometry and the external load only, accurate
calibration can be obtained from the sensor dimensions solely.

It is obviously necessary to perform an integration on D-dot and B-dot
sensors output to restore the original field waveform. Section 3.1 will present
several methods to achieve integration. Section 3.2 will discuss the case of a

Small is define as electrically small, relative to the wavelength of
highest frequency. For standard EMP waveform, it corresponds to sensors
smaller than 10-15 cm.

13
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Figure 3-1. Simple models of electromagnetic field sensors.
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small short-circuited loop used to measure the H field directly.

3.1 INTEGRATING D-DOT AND B-DOT SENSORS OUTPUT

Two traditional and straightforward methods have been used to integrate the

measurements of D-dot sensors1 : using software integration and using hardware

integration. A better method combining the advantages of both will be presented

in this section.

This simplest of all methods is to digitize the raw data from the sensor

and perform the integration by software with the simple algorithm:

An ' Yn-1 +*. (21)

This technique works well, but it has major disadvantages. Because the

D-dot sensors respond to the time-derivative, they produce an output which is

even faster that the excitation. Figure 3-2 (top) shows in (a) a typical D-dot

measurement with a rise time of approximately 1.2 ns, which is about 5 times

faster than the actual field being measured as shown on bottom2 . It is

therefore necessary to oversample the signal to capture the faster rising edge.

An other major problem with this technique is the reduction of the dynamic range

resulting in a poorer resolution of the part of the signal corresponding to the

falling edge of the pulse (this problem will be discussed later). This algorithm

is also highly susceptible to the trigger jitter unless a sufficient number of

points is obtained on the rising edge. Of course, this technique also require

higher bandwidth instrumentation and data links, which becomes very expensive at

frequencies above I GHz.

The other common technique to integrate the measurement, is the use of a

passive integrator. They consist of simple resistor-capacitor passive network

resulting in a lst-order low-pass filter with the transfer function:

H(s) - 1 (22)
1 + r s

which approximate an integrator for frequencies large compared to 1/r. For

commonly available devices (r- 1 to 10 psec), the rising edge will be properly

restored and consequently, there is no need to oversample as the signal being

1 This section also applies to B-dot magnetic sensors.

2 Actually, the reference curve shown is the voltage measured across the two

plates of the simulator near the generator. This voltage is faster than
the actual field found at the sensor location, which is about 6.5 ns.
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measured is not much faster than the original field. On the other hand, the
falling edge will sag due to the cut-off frequency in the range of 30-300 kHz,
and will need to be restored with further processing. A disadvantage of these
devices is that they are designed to match high-impedance (I MO) instrumentation,
which is not usual for high-bandwidth digitizers'. But the biggest disadvantage
is their high insertion loss. The output of a D-dot sensor to a 40 kV/m field
is about 25 Volt peak, and the output of a 1 psec integrator is 75 mV peak. It
then becomes impossible to measure lower fields, such as in boxes or enclosures.

An alternate technique developed to overcome these disadvantages make use
a specially designed device similar to the passive integrator, but with a much
smaller time constant of the order of 2 to 10 ns, that has been named a partial
integrator. The result is that only the higher frequencies which contribute for
the accelerated rise time are integrated. The output still needs to be
processed, but it is only 10 to 50% faster that the original field, making it
easer to digitise. The effect of such a device can be observed on Figure 3-2
(top), where the curve (b) is the output of a 5 ns partial integrator. The
sensor output is slowed to give a rise time of about 4.1 ns, thus allowing the
use of a slower sweep to capture a longer time window.

Another advantage of the passive integrator is the increase in dynamic
range. The time-derivative of the field result in a signal of large amplitude
during the short rising portion of the field, followed by a much smaller signal
(in this example, with an amplitude of 1/25 th of the peak) of long duration
during the decay portion. The digitizers have a resolution of 8 to 9 bits for
a full scale signal necessary to capture the peak amplitude, leaving a resolution
of only about 4 bits for the trailing edge. This poor resolution will introduce
noticeable errors during the integration. In this example, the 5 ns partial
integrator reduces the peak amplitude by only 40%, but a 30 ns partial integrator
would reduce the amplitude by a factor of 5, resulting in an increase in dynamic
range of about 2 or 3 bits.

To build even a simple filter for frequencies above 100 MHz is difficult.
Discrete components cannot be used because of stray capacitance of inductors and
stray inductance of leads and capacitors. Even very short leads introduce stub
effect. This problem has been addressed by designing a transmission line section
about 5 inches long. The diameter of the central conductor and the outer shell
are about 0.312 and 0.718 inches respectively and are chosen to maintain the 50 Q
characteristic impedance. The middle portion of the central conductor is made
much thicker, almost touching the outer shell, thus inserting a relatively large
capacitance. This conductor is made of aluminum which is anodized to form a very

The LeCroy digitizers have a front-end amplifier, which may be used to
provide a high impedance input, but at the cost of limiting the bandwidth
to 150 MHz.
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good insulating layer at the surface to prevent any conduction to the outer
shell. This capacitance (C.) appears in parallel with the load and values in the
range of 100 to 400 pF can be obtained. This capacitance is much larger than the

internal capacitance C of the sensor, changing its transfer function to:

Vout = AqR dDcosO • I for C,>> C (23)S+ RCs foscC(3

which is equivalent to the sensor output passed through a lst-order filter with

a cut-off frequency fc of l/2fRC,. It is difficult to build the device to match
a given fc, but as long as the transfer function can be measure accurately,
proper waveform recovery can be achieved. Figure 3-3 shows the measured transfer
function of a partial integrator compared with an ideal lst-order low-pass

filter, with at cut-off frequency of 30 MHz. The agreement is very good: less
than 1 dB deviation for frequencies up to 750 MHz, making it suitable for an IIR

implementationi.

Recovery of the original field is done simply by multiplying Vout by

(I + RCxs ) to undo the effect of the partial integrator (C. = 100 pF), and then
multiply by I/s to integrate. By using the bilinear transformation, we obtain

the transfer function:

(+RCx) + (T-RC+x) z- (
H Wz 7 7 (24)

S-1

which translates to:

-n -(n1+( C)-,TRC.) xn-1 (25)

On Figure 3-2 (bottom), the result of this algorithm is shown on curve (b).
The agreement with a purely software integration on curve (a) is very good. The
algorithm is very stable, as it can be seen on curve (c), where the sweep rate
was selected to be very near the Nyquist limit (sampling at about every 2 ns).

The key characteristics of the field (rise time, peak amplitude) and the overall

shape of the curve is still very close to the other measurements (done at a
0.2 ns sampling rate), even when severe blooming occur onto the internal
graticule of the digitizer such as in this measurement.

1 The small residual error can be easily corrected with a small FIR filter
if necessary.
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3.2 COMPENSATING FOR LOW FREQUENCY CUT-OFF

It was shown that passive sensors connected to 50 0 lines gives the time-
derivative of the fields. However, if we consider the case of a small short-
circuited loop, it is possible to obtain magnetic fields directly by measuring
the current. Equation (20) then becomes Iout = Aq.B/L. This response is no
longer dependent of the geometry alone and the sensor must be properly
calibrated. The main parameter of the loop, beside its equivalent area, is its
inductance, which is given by:

L - 140 r ln(8.r-2) (26)

which for small loops is of the order of 0.1 AH. The DC resistance of the loop
is negligible compared to the impedance of the probe. A current probe is
basically a transformer whose primary is the wire carrying the current to
measure. Typical current probes have an insertion impedance of 20 to 50 mfl.

The values of R and L will effectively impose a low frequency cut-off at
fc - R/2rL, in the range of 30 to 300 kHz. The effect of this cut-off can be
seen on Figure 3-4. The excitation (reference curve) is an ideal EMP waveform,

with a rise-time of 6.5 ns, a pulse width of 266 ns and duration of about I As,
matching the EMP simulator characteristics. Not surprisingly, the sensor will
give an accurate measurement of the rising edge, but the falling edge will be
affe<c-d by the cut-off. The waveform crosses the zero-axis at a earlier time
and converges back to zero from the negative side.

Manufacturers of field sensors suggest a method to correct this distortion
[11], but it is derived from integrals in their continuous form, which is not
very practical. Instead, the correction may be achieved by using the IIR filter

equivalent of (s+2xf.)/s, yielding to:

- y.-1 + (2f. T+l) x. - (2ff T-l) xni (27)

Numerical error may be introduced for lower value of fc or T because the
coefficient of x, and x,_1 then become very close to unity. This problem can be
overcome by using double precision arithmetic.

As noted, it is necessary to calibrate the sensor, in particular to find
the value of ft. It is not always possible to measure the sensor response for
very low frequencies'. It is however possible to obtain this value from a time

' For instance, the HP8753 network analyzer used for sensor calibration
covers the band from 300 kHz to 6 GHz.
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domain measurement. As seen on Figure 3-4, the sensor output crosses zero at a

time to and this value is related to fr. For to much larger than the rise time,
the reference curve may be approximated by e- t (from equation (1), where #>>a)
and the value of a can be obtained from the curve. Solving the Laplace equation

yield to:

ae-t° = w e t° (28)

which can be solved numerically by an iterative procedure.
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4.0 CORRECTING FOR MEASUREMENT SYSTEM ERRORS

Beside specific transfer functions and errors introduced by the sensors,

the other components used in making the measurement system (cables, fiber optic

links, digitizers, etc.) also introduce errors. Many of these errors can be
precisely measured and an appropriate filter to compensate their effect can be

de&4.-ed.

The first section addresses the problem of losses in long cables. A

technique is developed to design FIR filters of arbitrary transfer functions.

Although the problem with cables is not severe, the same technique is used

whenever a precise filter is required, such as in the case to fine tune an IIR

filter.

The second section treats the problem of designing a digital filter when

only the desired magnitude is known. The Hilbert transform is introduced to

relate the magnitude and the phase response of a system.

4.1 CORRECTING FOR CABLE LOSSES

The DREO large EMP simulator has a test area of 30 by 20 meters located

about 15 m from the shielded room housing the instrumentation. Therefore, analog

data links (coaxial cables or fiber optic) of up to 40-50 meters may be needed.

Even good quality cables fitted with good quality connectors attenuate the higher

frequencies by as much as 3 to 6 dB. This section describes the design of a

corrective filter to compensate for this effect.

Figure 4-1 shows the frequency response, H(w), of a 30 m cable. The

apparently erratic behaviour of the phase is in fact a nearly linear phase, but

with a rapid slope due to the long delay introduced by 30 m of cable. This

delay does not affect the solution and it can be removed easily (see below). The

inverse of this response, Hr(w) - I/H(w), is used to compute the recovery filter.

In this case, a FIR design was chosen to build the filter as it allows to model

arbitrary transfer functions. The procedure is based on truncating the impulse

response, h(n), obtained from the inverse FFT if the frequency response. The

truncation is performed by keeping all the points around the peak until h(n)

permanently stay bc2.ow a predetermined threshold, usually 0.1% to 1% of the peak.

This procedure is valid if the sequence obtained is much shorter than the size

of the FFT, which is the case if the filter results in fewer than 50 coefficients

and a FFT size of 512 to 2048 is used. Because the frequency response is very

1 In fact, when measuring the response of long cables with the HP8753

network analyzer, a very slow sweep should be chosen to remove the
transient effect of the long delay.
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smooth, the Gibbs phenomenon is negligible and the use of a window function is
not necessary.

It is known that the straight application of the DFT way gives erroneous
results. This subject has been treated extensively in the literature (such as
[9], [12], [13], [14] and [171) and will not be reviewed here.

The Fourier transform of a real signal yield to a symmetry between the
positive and negative frequencies: G(f) - G*(-f). Consequently, it is necessary
to supply both positive and negative frequencies to recover a real signal from
its spectrum. The DFT of a N-point sequence, from t-O to (N-l)At, results in a
sequence of "/2+1 frequencies, from f-O to "/2.Af, followed by its conjugate
image, N/Z-1 frequencies, from f--(N/2-l)Af to -Af 1. It is therefore necessary
to mirror the frequency response with its conjugate before taking its IDFT to
obtain a real result. In addition, it is necessary that the response for f-0 and
f-(N/2)Af be real (these are the only two frequencies which do not have their
conjugate mirrored). The value at DC is always real and can be obtained from DC
measurement or obtained by extrapolating the first few frequencies to zero. The
value at f-N/2Af however is generally complex. One possible work-around is to
use a window function such as a cosine-taper to force the frequency response to
zero or unity at that frequency. An other solution is to multiply the frequency

response with the ideal delay line e- It. This function has a unit magnitude
and a linear phase, corresponding to a shift of the time domain respond by t-td.
Choosing td to obtain a response of -1 at f-N/2Af, ensures that the IDFT yields
to a real result, and furthermore ensures that the phase will be continuous, ie.
will not jump from a negative to a positive phase at that frequency.

Of course, the impulse response h(n) must be computed with the same
sampling rate as the sequences to be filtered, which is determined by the
specific digitizer used. For the HB7912 or SCD1000 for instance, the sampling
rate is related to the time base as: AT - 10ts,/Nt, where t.. is the sweep rate
in second per division and Nt is the number of points (512 or 1024). The
corresponding Af required is: Af - l/(NfAT) - Nt/Nf /10t.", where Nf is the size
of the FFT. An appropriate value for Af is 5 MHz, for sweep rates of the order
of 10 nsec/div It is not necessary to measure the cable characteristics for all
possible values of Af; instead, decimation or interpolation of only few
measurements may be done.

Figure 4-2 shows the function He(c) to compensate for the cable losses. A
typical measurement with the HP8753 network analyzer is made at 401 frequencies,
and with a Af of 5 MHz, it covers a band up to 2 GHz. In this example, the
coefficients are computed for a 10 ns/div sweep (AT - 0.195 ns) and for a FFT

1 The DFT of a sequence is periodic itself, with a period of I/AT.
Therefore, the negative frequencies -(N/ 2-1)Af to -Af are reflected to
("/ 2+l)Af to (N-l)Af.
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Figure 4-1. Frequency response of a 30 meter cable.
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size of 1024. Therefore, it is necessary to specify H,(f) up to 2.5 GHz and some
extrapolation is required. One solution is to use a window function and force
H. to converge toward zero, let say in the band of 1.5 to 2 GHz. This is
adequate if we consider that most of the signal is concentrated below 1 GHz and
anything above is considered as noise. Another solution is to extrapolate H,(f)
either numerically (linear or quadratic) or by modelling it as a I"t or 2nd-order
system. However, this method may produce unstable filters as the noise present
in the higher frequencies will be amplified (correcting for losses of 3 to 6 dB
generally produce good results, but great caution should be exercised for
correction of more than 10 dB). The method used in this example, is to extend
H,(f) based on the value of the last frequencies present in the measurement. Its
overall performances are good as the amount of boosting is limited and it tends

to produce filters with fewer coefficients.

An impulse response obtained form the IDFT is also periodic, ie. a circular

sequence is obtained. Due to inherent or added delays, the origin of the
response is not necessarily the beginning or the middle of the sequence. The
easiest procedure is to perform a circular shift to bring the peak value near the
middle, then perform the truncation and possibly multiply with a window function.
Figure 4-3 shows the function h(t) obtained from Hc(f) on Figure 4-2 (only about
80 coefficients are shown). By using a threshold of 1% of the peak value, this
sequence can be truncated to 9 coefficients. The exact frequency response of
this FIR filter is also compared with H.(f) on Figure 4-2. The agreement is very

good with an error smaller than 0.2 dB.

4.2 HILBERT TRANSFORM

In the previous section, a technique for designing a filter matching a
given transfer function H(w) was presented. It relied on the full definition of
H(), ie. both its real and imaginary components (or alternatively both magnitude
and phase). Filters are frequently defined in terms of magnitude or squared-
magnitude, and in many cases, it is difficult or not practical to measure both
components. For instance, with the use of a sine-wave generator and a power
meter, it is easy to measure the magnitude of the response of a digitizer, but
not possible to obtain the phase information. The phase response cannot be
simply ignored if a stable and causal system is desired.

Linear systems theory ([7], [9], [15], [18]) shows that for stable and
causal systems, the real and imaginary parts of the Fourier transform are related
to each other by the Hilbert transform. In particular, for minimal phase
systems i, the following relation for H(w) - H2 (w) + JHS(w) is obtained:

1 A minimal phase system is one for which all the poles and zeros of the
transfer function H(z) are inside the unit circle.
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Figure 4-2. Response of filter for compensating cable losses.

27



hMt

1.0 (9 coefficients)

0.5 ____

Figure 4-3. Impulse response of filter to compensate cable losses.

28



H(o) -H(w) (29)

HS(w) = HI(w)

where H denotes the Hilbert transform of H. Similarly, the relation between the

magnitude and phase can be easily demonstrated if we define H'(w) as the
logarithm of H(w), we obtain:

H'(t) - In( IH(M)I-eV w( ) (30)

= lnlH(w)I +jH'()

which can be related to (29).

As with the Fourier transform, a discrete Hilbert transform (DHT) can be
defined. However, it is easier and more efficient to relate the DHT with the
DFT. The properties of the Hilbert transform are developed in [15], but the most
important ones are summarized here:

The Hilbert transform g(t) of a real signal g(t) is real.

The duality property states that if the Hilbert transform of a signal g(t)
is g(t), then the Hilbert transform of g(t) is -g(t).

And more important, the Fourier transforms of g(t) and g(t) are related as:

6(f) = -j sgn(f) G(f) (31)

where sgn(f) is the signum function. This relation allows implementation of the
DHT simply by using the already developed DFT or FFT algorithms.

For a sequence of N points formed from a signal and its mirrored conjugate,
the signum function is defined as:

1 forn 1, 2, .N

sgn(n) -1 for n- N +1,... N- (32)

0 for n 0, N
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From the properties presented above, a simple procedure can be established

to recover the phase information from the magnitude alone:

Form a N-point sequence (x) of the magnitude

Take the natural logarithm of (x)

Mirror (x} with its conjugate, thus obtain an extended sequence (x,)

of M-points.

Take the FFT of (xm )

Multiply with sgn(n), then with -j

Take the real part of the inverse FFT

Truncate back to N-point

The example shown on Figure 4-4 illustrates this technique. The phase of

a resonating 2nd-order system is reconstructed from its magnitude, shown on top.

Due to the periodic nature of the DFT, the phase obtained converges back to zero
at the maximum frequency, but as demonstrated in the previous section, this can

be interpreted as a fixed amount of delay which has no effect on the design of

a FIR filter. After compensating for that delay, the phase obtained with the

Hilbert transform is in good agreement with the known phase.
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5.0 CONC SIor

It was shown that proper digital signal processing can significantly

improve the accuracy of the measurements or extend the useful bandwidth or range
of an instrument. Algorithms were developed to take into account the transfer

functions inherent to each of the various sensors. Other techniques were
developed to compensate for errors present in the measurement system.

It is necessary to integrate the output of electromagnetic field sensors
responding to the time-derivative of the field. An alternative approach to

perform this integration was developed. A specially made device (called a

partial integrator) was designed and used in conjunction with digital filtering.
Results showed that the bandwidth of the digitizers was extended by allowing the
use of slower sweep rates, and that the dynamic range was extended by compressing
the peak of the output and thus expanding the other portions of the waveform.

It was shown that some field sensors may be used to measured the field

directly (and not the time-derivative). These measurements are affected by a low
frequency cut-off and an algorithm was developed to compensate this effect.

A technique for designing FIR filters with arbitrary transfer function was

introduced. This technique is particularly well suited to model the effect of
signal transmission through long cables and also to fine tune the response of IIR
filters. In many cases, very good response (error less than a fraction of a dB)
can be obtained with few filter coefficients (between 10 to 50).

The relation between the Hilbert transform and the real and imaginary parts

of a transfer function was presented. This relation was extended to relate both
the magnitude and phase of the function, thus allowing to reconstruct the phase

information from the magnitude alone. This relation allows the design of a FIR
filter to model a system for which only the magnitude can be measured. A
practical implementation of the discrete Hilbert transform was also presented.
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